

CRYO-VAC Modal Testing of AMSD Mirror

Ted Rogers, Joe Geary – CAO / UAH Phil Stahl - Marshall Space Flight Center

MODAL TEST JUSTIFICATION

- •Obtain vibration induced modal test data at ambient and cryogenic-vacuum conditions.
- •NON-Contact; Full Aperture
- •Validate theoretical model with experimental testing data.
- •Determination of first five (5) out-of-plane modes of mirror displacement as required by AMSD.

PROJECT PROGRESSION

PHASE I:

- Proof of Concept
- Demonstrate Phase synchronized data acquisition
- Adjustable Phase Triggering

PHASE II:

Integration of modified Phasecam Modal System into proof-of-principle set-up

PHASE III:

Integration of Modal System into XRCF with TBD test mirror

PHASE IV:

• Full CRYO-VAC Modal test of AMSD Mirror Segment

PHASE IV: PROSOSED AMSD CRY-VAC MODAL TEST

PHASE I: Proof-of-Principle Layout

Optical Path Layout

Speaker and Membrane

Examples of Drum Head / Membrane

Vibrating in Natural Modes.

MODES

(0,2)

* Actual Mode (1,1)

Interferograms to follow

(0,3)

(1,1)*

ELECTRONICS

Center for Applied Optics Acoustic and Trigger Signal Generation UAH The University of Alabama in Huntsville

SIGNALS

Trigger Signal – (Square Wave, Falling Edge)

Acoustic Signal (Sine Wave)

INTERFEROGRAM OF FLAT PELLICLE UAH

12

PHASE STEPPING THROUGH MODE

MODE (1,1) @ 356 Hz

0 degree PHASE

180 degree PHASE

60 degree PHASE

240 degree PHASE

120 degree PHASE

300 degree PHASE

HIGHER MODES

MODE (0,2) @ 644 Hz

MODE (3,1) @ 760 Hz

PHASE II: Phasecam Integration

